- Agrawal R., S. R. Fast Algorithms for Mining Association Rules, Proceedings of the 20th VLDB Conference. Santiago, 1994.
- Feelders, A., Danielsa, H., & Holsheimer, M.,. Methodological and practical aspects of data mining. Information & Management, 37(5), 271–281. doi:10.1016/S0378-7206(99)00051-8, 2000.
- Ferreira Filho, V. J.,Gestão de Operações e Logística na Produção de Petróleo. Rio de Janeiro, RJ, Brazil: ELSEVIER, 2015.
- Hand, D., Mannila, H., & Smyth, P. , Principles of Data Mining. Cambridge, Massachusetts: MIT Press, 2001.
- Leite, R., Maritime transport of deck Cargo to Petrobras fields in Campos Basin: an empirical analysis, identification and qualification of improvement points. Rio de Janeiro: PUC-RIO., 2012.
- Middleton, M. R., Introduction to Decision Trees. In M. R. Middleton, TreePlan Tutorial (pp. 157-168), 2015
- Quinlan, J. R., Simplifying decision trees. International Journal of Man-Machine Studies 27 (3): 221. doi:10.1016/ S0020-7373(87)80053-6., 1987.
- Rosenblatt, F. x., Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms. Washington DC: Spartan Books, 1961
- Rumelhart, D. E., Learning Internal Representations by Error Propagation (Vol. Volume 1: Foundations). MIT Press, 1986.
- Ting, S., Tse, Y., Ho, G., Chung, S., & Pang, G. (2014). Mining logistics data to assure the quality in a sustainable food supply chain: A case in the red wine industry. International Journal of Production Economics, 200–209, 2014.
- Y. Yuan, S. M. (1995). Induction of fuzzy decision trees. Fuzzy Sets and Systems 69, 125–139, 1995.